

Chell Instruments Ltd
Folgate House
Folgate Road
North Walsham
Norfolk NR28 0AJ
ENGLAND

Tel: 01692 500555
Fax: 01692 500088

 flightDAQ-TL

USER PROGRAMMING GUIDE

e-mail:- info@chell.co.uk

Visit the Chell website at:
http://www.chell.co.uk

 900224-1.1

mailto:info@chell.co.uk
http://www.chell.co.uk

Please read this manual carefully before using the instrument.

Use of this equipment in a manner not specified in this
manual may impair the user’s protection.

Chell Document No. 900224 : Issue 1.1
ECO: 3924 Date: 16th September 2019

Chell’s policy of continuously updating and improving products means that this manual may contain
minor differences in specification & functionality from the actual instrument supplied.

Contents

1. Introduction. ... 1

2. Native User Command Protocol. ... 2

2.1. Command Packet. .. 2
2.2. Acknowledgement. ... 2
2.3. User Commands. ... 2

3. Status Data Format. ... 4

4. Native Communication Channels. ... 5

4.1. TCP ... 5
4.1.1. Overview. .. 5
4.1.2. Connection. ... 5
4.1.3. TCP Protocol ... 5
4.1.4. TCP Data Rate. ... 6
4.1.5. Control Via TCP. .. 6

4.2. UDP ... 7
4.2.1. Overview. .. 7
4.2.2. Connection. ... 7
4.2.3. Chell UDP Protocol .. 7
4.2.4. UDP Data Rate. ... 8
4.2.5. Control Via UDP. .. 8

4.3. Timestamping .. 8
4.4. IENA specification ... 8

5. NetScanner Emulated Communication 10

5.1. Overview .. 10
5.2. Connection .. 10
5.3. Supported Commands .. 10
5.4. Streamed Data Output format ... 13
5.5. NetScanner Error Codes ... 13

Page 1

1. Introduction.
This manual covers the communication protocols available for the flightDAQ-TL product. The
flightDAQ-TL supports a subset of Chells native command set found in our other DAQ systems (in
particular the microDAQ-Mk2 & flightDAQ-Mk2) so users familiar with those other systems will notice
many similarities between those and the flightDAQ-TL. Additionally the flightDAQ-TL supports a
Netscanner emulation mode where it operates with a sub-set of the Netscanner commands available
on a 9016/9022 Netscanner system from TE Connectivity

Furthermore the flightDAQ-TL supports the DDS command protocol but that will be covered in a
separate document.

From power up, the flightDAQ-TL reads its non volatile setup information and calibration, and after
applying these settings is then ‘up and running’, reading the (pre-configured) transducers and
delivering calibrated data. Although for many applications this is enough, more demanding
applications may need to control the data delivery, request data rezero operations and more.

As mentioned previously, the flightDAQ-TL has the same user interface protocol taken from the
microDAQ-Mk2 system, allowing remote access to the essential commands required when
integrating the unit into an instrumentation system. A simple block parity check adds security to the
command protocol, and a correctly received command may be acknowledged if required.

The following sets out the essentials of the command protocol and the data packet format for all
channels.

This document version supports V1.0.1 of the flightDAQ-TL firmware. If using earlier firmware then
some user commands and/or parameters may be invalid.

Page 2

2. Native User Command Protocol.
2.1. Command Packet.
The native command protocol is based around a simple delimited control packet, allowing easy
identification of command start and end. The packet includes a block parity byte increasing the
robustness of transmission; the packet format is shown in Figure 2.1.

> (ASCII 62) Command Parameter Parity < (ASCII 60)

Figure 2.1 Command Frame Format.

The command byte values are defined in the following section, and may or may not require a
parameter byte, for example data rate. The parity byte is an even block parity of all bytes (other than
itself), including the delimiters. Calculation for parity bit n is therefore the sum of each bit n using
modulo 2 arithmetic.

For a command not requiring a parameter, an arbitrary dummy byte should be used. This can be
any value as the number is not processed other than in determining the parity of the command
packet.

2.2. Acknowledgement.
A command packet is positively acknowledged if it is correctly formatted and the parity byte is
correct. A positive acknowledgement is denoted by the transmission of ASCII 42 ('*'), a negative
acknowledge indicating an invalid command by ASCII 33 ('!'). Recognised command values are then
acted upon, though unrecognised values are discarded.

2.3. User Commands.
The available user command set is summarised in Figure 2.2.

Command Byte,
Char/
ASCII

Parameter Description

Reset R/82 0: Soft reset

1: Hard reset

Request a device reset. The parameter determines whether it is a
hard reset (OS reboot) or soft reset (application restart)

Rezero Z/90 0 to 31: rezero
specified channel

255: All channels

Request a rezero. For a single channel rezero, the parameter is
zero-indexed – ie. for channel 1, specify a 0 in the parameter byte.
0-15 are for primary channels, 16-31 are for secondary channels.

Rate V/86 byte = 0xab

b = 0 : Off
b = 1 : n/a (250Hz)
b = 2 : n/a (250Hz)
b = 3 : n/a (250Hz)
b = 4 : n/a (250Hz)
b = 5 : 250 Hz
b = 6 : 200 Hz
b = 7 : 150 Hz
b = 8 : 100 Hz
b = 9 : 50 Hz
b = 10 : 33 Hz
b = 11 : 25 Hz
b = 12 : 20 Hz
b = 13 : 10 Hz
b = 14 : 5 Hz
b = 15 : 1 Hz

Adjust the data delivery rate for the TCP/UDP communication
channel.

The lower nibble of the parameter byte (b) selects the data rate,
while the upper nibble (a) is not used (could be set to 1 in keeping
with the same command found on the microDAQ-MK2 system,
but is actually ignored on the flightDAQ-TL).

Note that rate values of 1 to 4 are currently not applicable to the
flightDAQ-TL and are reserved for future use.

Page 3

Protocol P/80 byte = 0xab

b = 0 : 32 bit LE
b = 1 : 32 bit BE
b = 2 : ASCII
Engineering
Units

Permits the changing of the data streaming protocol.

The lower nibble of the parameter byte (b) selects the protocol,
while the upper nibble (a) is not used.

The abbreviations LE and BE in the table refer to little and big
endian respectively, denoting whether the less significant byte is
sent first or last.

Binary encoded data is a 32bit representation of the floating point
EU value for a channel conforming to IEEE754.

ASCII representation is a comma separated channel data string.

Stream ON 1/49 None Enable the streamed data delivery, at the rate preconfigured in
the flightDAQ-TL webserver or via the Rate command.

Stream OFF 0/48 None Disable the streamed data delivery.

Get Status ?/63 0 : Short
1 : Internal pressure
and temperature
2 : Full
3 : undefined
4 : undefined
5 : Excitation reading
6 : Sensor type
7 : Firmware ID
8 : Unit serial number
9 : Connector serial
numbers

Return a status packet from the flightDAQ-TL. Three main
versions are available, 'short', ‘internal pressure/temp' and 'full'.
Short returns status byte information showing current operating
state only, whereas 'full' returns all setup options and internal
pressure & temperature data in addition. ' internal pressure/temp
' returns the status and internal pressure & temperature
informatio. The data format is documented in a separate section.

Additional status variants return other specific information values
as listed in the table.

Note at time of writing this command is currently Work In Progress,
and as such may not return the requested status packet. This will
be addressed in a future firmware release.

Channels H/72 byte = 0xab

b = 0 - 16
b = 1 - 32

Set the number of active channels returned to the user for a data
stream.

The lower nibble (b) sets the number of channels which can be
either 16 (for all primary channels) or 32 (for all primary and
secondary channels). The upper nibble (a) is not used.

Poll O/79 None Request a single data packet in the current active format. Data
streaming should be set off before using this command. Note
that there is no positive acknowledge for this command.

Figure 2.2, The Available User Command Set for the flightDAQ-TL.

Page 4

3. Status Data Format.

Status data is currently Work In Progress on the flightDAQ-TL and such the three main forms are not
fully defined. This section will be updated when Status is fully implemented in a future firmware
release.

Page 5

4. Native Communication Channels.
4.1. TCP

4.1.1. Overview.
The filghtDAQ-TL’s TCP channel affords it the ability to stream real time data at high speed over
standard 100Mbit Ethernet connections.

4.1.2. Connection.
When using the TCP/IP channel, the flightDAQ-TL is programmed to listen on its local port number
101. It will respond to a connection request, connect and immediately start streaming data if it has
been previously setup to use the TCP channel. Note that the flightDAQ-TL only supports one TCP
connection on this port.

It is possible either to run the flightDAQ-TL over a local Ethernet connection, or directly from a PC’s
network card, as long as a crossover cable is used. A dual network card (or 2 cards) may be used,
however care should be taken about network routing, as similar subnets for two network connections
on a single Windows ® machine can cause the flightDAQ-TL not to be seen on the second card. The
flightDAQ-TL will respond to a ‘ping’ instruction for the purposes of setup and troubleshooting.

4.1.3. TCP Protocol
The different data protocol formats supported are as shown in Figure 4.1. The binary data formats
take the floating point values and encode them as 32bit IEEE754 representation. Binary protocols
require less communications bandwidth as well as less processor overhead within the flightDAQ-TL;
it is recommended that engineering unit conversions be applied at the client.

32bit IEEE754 float, little endian

Header Channel1 Data Channel 2 Data Channel 3 Data
0x00 0xFF 0x00 LSB MSB LSB MSB LSB MSB

 ….
Channel ’N’ Data

LSB MSB

3 byte header identifies the start of the packet, followed by all channels (1 to ‘N’ where ‘N’ =
16 or 32 depending on setting), LSB first, with no delimiters.

32bit IEEE754 float, big endian

Header Channel1 Data Channel 2 Data Channel 3 Data
0x00 0xFF 0x00 MSB LSB MSB LSB MSB LSB

 ….
Channel ’N’ Data

MSB LSB

3 byte header identifies the start of the packet, followed by all channels (1 to ‘N’ where ‘N’ =
16 or 32 depending on setting), MSB first, with no delimiters.

ASCII comma separated

Hdr Channel 1 Data Channel 2 Data …. Channel ‘N’ Data
* , #.###### , #.###### , , #.######

Single character header followed by all channels (1 to ‘N’ where ‘N’ = 16 or 32 depending on
setting), 6 decimal places, comma delimited.

Figure 4.1, Data Packet Protocol, TCP Channel.

Page 6

4.1.4. TCP Data Rate.
The data delivery rate is selected from the setup page of the webserver or via the user commands
detailed previously (see Section 2.3). Although the system endeavours to deliver the rate with
maximum accuracy, ultimate responsibility for data timing lies with the user’s host system.

The data rate over TCP is vulnerable to low level operating system considerations, in particular any
‘delayed acknowledgement’ algorithm. Windows ® attempts to suppress too many
acknowledgments for small data packets swamping a network by inserting a 200ms (default) delay
in the generation of a second acknowledgement to a communicating device. Since the flightDAQ-
TL’s communication consists of many small packets at a high repeat rate, this algorithm has a
catastrophic effect on its delivered bandwidth (effectively limiting it to tens of Hz).
The bottleneck can be removed by altering/adding a value of the registry key:
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{adapter GUID}
(HKLM = HKEY_LOCAL_MACHINE; {adapter GUID = the network adapter being used by the
Windows PC), though this should be done only in consultation with the network administrator.
In Windows 7, 8 & 10 the DWORD value TcpAckFrequency should be set to 1 in the registry key.

Please note that if streaming at high data rates it is essential that a good network infrastructure is
used. It is recommended that any streaming is performed over a ‘private’ network (i.e. disconnected
from any corporate network structure) to reduce the number of packets flying around the network. It
is also highly recommended that a high speed managed network switch with a large store and
forward buffer is used between the flightDAQ-TL and client PC, particularly if several units are being
used together to acquire data.

4.1.5. Control Via TCP.
A positive acknowledgement is returned as ‘**’ and a negative acknowledgement as ‘!!’.

The argument regarding loss of acknowledgements in the data stream holds good for the TCP
channel, and it is recommended that a ‘Stream Off’ or ‘Standby’ is sent before any other command.

Page 7

4.2. UDP

4.2.1. Overview.
As with TCP the flightDAQ-TL’s UDP channel affords it the ability to stream real time data at high
speed over standard 100Mbit Ethernet connections.
The flightDAQ-TL supports two data stream formats, the native Chell data stream format and an
IENA specification output, which can be setup from the web server.

4.2.2. Connection.
UDP is known as a ‘connectionless’ protocol, but it will listen for incoming commands to it’s local
port (101 – same as TCP) and will respond accordingly back to the host IP & port that sent the
command packet.

To facilitate auto streaming over UDP, setup requires a remote IP address and remote port number
to be configured, so it knows where the streaming data is to be sent to. It is possible either to run
the flightDAQ-TL over a local Ethernet connection, or directly from a PC’s network card, as long as a
crossover cable is used. A dual network card (or 2 cards) may be used, however care should be
taken about network routing, as similar subnets for two network connections on a single Windows ®
machine can cause the flightDAQ-TL not to be seen on the second card. The flightDAQ-TL will
respond to a ‘ping’ instruction for the purposes of setup and troubleshooting.

4.2.3. Chell UDP Protocol
The different data protocol formats supported are shown in Figure 4.2 (same as with the TCP protocol
above). The binary data formats take the floating point values and encode them as 32bit IEEE754
representation. Binary protocols require less communications bandwidth as well as less processor
overhead within the fligthDAQ-TL; it is recommended that engineering unit conversions be applied
at the client. Note the difference between UDP & TCP in that the header for UDP consists of a 32 bit
number indicating the flightDAQ-TL serial number followed by a further 32 bit packet number!

32bit IEEE754 float, little endian

Header (serial num.) Packet Number Channel 1 Data Channel 2 Data
LSB MSB LSB MSB LSB MSB LSB MSB

 ….
Channel ’N’ Data

LSB MSB

4 byte header containing the unit serial number identifies the start of the packet, followed by
a packet number, followed by all channels (1 to ‘N’ where ‘N’ = 16 or 32 depending on
setting), LSB first, with no delimiters.

32bit IEEE754 float, big endian

Header (serial num.) Packet Number Channel 1 Data Channel 2 Data
MSB LSB MSB LSB MSB LSB MSB LSB

 ….
Channel ’N’ Data

MSB LSB

4 byte header containing the unit serial number identifies the start of the packet, followed by
a packet number, followed by all channels (1 to ‘N’ where ‘N’ = 16 or 32 depending on
setting), MSB first, with no delimiters.

ASCII comma separated

Hdr Channel 1 Data Channel 2 Data …. Channel ‘N’ Data
* , #.###### , #.###### , , #.######

Single character header followed by all channels (1 to ‘N’ where ‘N’ = 16 or 32 depending on
setting), 6 decimal places, comma delimited.

Figure 4.2, Data Packet Protocol, UDP Channel.

Page 8

4.2.4. UDP Data Rate.
The UDP data rate is much the same as the TCP data rate in its configuration and use, so all the TCP
data rate information is applicable for UDP.

4.2.5. Control Via UDP.
A positive acknowledgement is returned as ‘**’ and a negative acknowledgement as ‘!!’.

The argument regarding loss of acknowledgements in the data stream holds good for the UDP
channel, and it is recommended that a ‘Stream Off’ or ‘Standby’ is sent before any other command.

4.3. Timestamping

In addition to the above, standard data streaming over both TCP & UDP can include time stamping
information to aid with synchronisation of data packets. The device keeps track of time to
microsecond resolution since it was powered on but this can be turned into a real time by either
synchronising the time with a PC (via the webserver) or for a more accurate time sync, by using a
PTP grandmaster to provide a constant PTP sync message.

In both cases the time stamp is represented as two 32 bit values, the first being the Unix Epoch time
(i.e. the number of seconds since 1st January 1970) and the second being the number of
nanoseconds in that second.

In the flightDAQ-TL’s data streaming, the timestamps can be placed at the start of a channel cycle
(ie. after the header but before channel 1’s data) or in front of every channel. This is configurable
from the Advanced page of the embedded webserver. Note that the byte order of the timestamp is
the same as that of the channel data, as configured by the protocol selection (32 bit LE or BE) and
timestamps are not added if the Engineering units protocol is selected instead. Adding timestamps
(particularly on a per channel basis) can significantly affect the speed of the data streaming – some
of the high data rates may not be achievable due to the extra data being transmitted per packet to
facilitate the time stamps in the stream.

4.4. IENA specification

The device has the option to output data in the IENA specification data packet format. This
specialised format arranges the data in a specific format containing various different information. The
data format is only available when using the UDP comms protocol.

Please Note: As of writing, this format is not supported in the current release of flightDAQ-TL
firmware and will appear in a future release. As this is a pre-defined format, the following
description will stand true when implementation is complete.

Data packets formatted in this way start with a specific header format before any data in the packets.

Key Size Time Status Seq Data 0 - Data 63 Temperature Reserve

d
End

16
Bits

16
bits

16
bit

16
bit

16
bit

16 bits 16 bits 32 bits - 32 bits 32 bits 16 bits 16
bits

 Frame
size

Time in
microseconds

 Rolling
16 bit

counter

Byte order
3-2-1-0

 Byte order
3-2-1-0

Byte order
3-2-1-0

Starting with the 16 bit key field, this is a user defined key that will appear at the start of every IENA
packet. The default value is 0x3101.

The next 16 bits of the data packet is the size of the packet, this is the total number of bytes in the
IENA header and the data blocks.

Page 9

The next section of data in the data packet is the time, this is 48 bits long and contains the time that
has elapsed in microseconds from the 1st of January of the current year. For this to work accurately
IEEE 1588 has to have been enabled and the device has to be synchronised with a grandmaster. It
is also possible for the user to get the time from a PC on the embedded webserver, this is however
less accurate than using a IEEE 1588 synchronised time. This will be in UTC or TAI depending on
the users choice.

The next 16 bits is a STATUS word. This word is used to show the status of various parameters in
the device, as follows:

Bit Meaning
1(LSB) Synced to external time
2 Synced to PTP master clock
3 Reserved for future use
4 Reserved for future use
5 Reserved for future use

Following this is a rolling 16 bit sequence number that counts how many packets have been sent in
this data stream, this is a rolling counter, so if the packet sent is greater than the maximum value this
field can hold then it will reset to 0 and start counting again.

After the header is finished the next part of the packet is the main data in channel order, this is 32 bit
floating point data and can be in big endian or little endian format depending on the users selection.
There is one 32 bit value for each channel of data.

The data is followed by a single 32 bit unit temperature value.

The scanner status is a 16 bit field of which is used to show various details about the scanner and
device. The least significant bit will show if the scanner is in purge mode or not, the second bit will
show if the device has been time synchronised. Further bits are reserved for future use and are set
as 0.

The final 16 bits are the end field, This value is a user settable value that signifies the end of an IENA
packet. The default value of this field is 0xDEAD.

Page 10

5. NetScanner Emulated Communication
5.1. Overview

The flightDAQ-TL has the ability to emulate a NetScanner instrument from TE Connectivity,
supporting a specific sub-set of the commands available to that family of instruments. Emulation is
enabled by setting the appropriate configuration item on the Advanced page of the embedded
webserver.

5.2. Connection

On startup, the flightDAQ-TL will open two sockets, one for receiving of broadcast UDP discovery
commands and the other for connection over TCP.

The flightDAQ-TL can be directly connected via TCP if the IP address is already known, but typically,
the host PC will broadcast the ‘psi9000’ discovery command over UDP to port 7000 and the
flightDAQ-TL will respond with a status packet on UDP port 7001 containing the IP address, listening
TCP port, etc. of the unit. The host can then open a TCP connection to that IP address/port for
sending of NetScanner commands and to receive streamed data.

5.3. Supported Commands

The table in Figure 5.1 lists the NetScanner commands & sub-commands supported by the
flightDAQ-TL in emulation mode. Please note that unless indicated, each command should be issued
without any spacing between the command letter, sub-command and any/all parameters.

All supported commands will respond like a NetScanner with either a positive acknowledge (‘A’) or
an error response (‘Nxx’ where xx is an error number – see section 5.5 below for more information)

UDP broadcast

Command Sub
Command

Parameters Description

psi9000 N/A None Broadcast discovery.

Response is a comma-separated string of status values:

ipadr,ethadr,sernum,mtype,sfwver,connst,ipadrst
,lisport,subnet,iparpst,udpast,pwrst,
where:

ipadr is the TCP/IP Address
ethadr is the MAC Address
sernum is the Serial Number
mtype is the Model Type
sfwver is the Firmware Revision
connst is the TCP/IP Connection Status
ipadrst is the RARP TCP/IP Address Assignment Status
(always set to 1 on the flightDAQ-TL
lisport is the TCP/IP port on which the flightDAQ-TL is
listening for connections
subnet is the Subnet Mask
iparpst is the TCP/IP Address Resolution Method (always set
to 0 on the flightDAQ-TL)
udpast is the UDP/IP Broadcast when Re-Boot status (always
set to 1 on the flightDAQ-TL)
pwrst is the Power Up Status

Page 11

TCP

A None NOP.

Used to verifiy proper communication.

B None Reset.

Resets some of the internal operating parameters to their default
state. Note this does nor perform a full system reset.

Average samples setting is set to its last stored value (in EE)

Any data streaming is stopped and currently configured data
streams are cleared (must be setup again with the ‘c 00’
command).

c

(Note: this command,
sub-command and
parameters are space
separated)

00 st pppp trig
per f num

Stream Data – Configure Stream

Configures a steam for the flightDAQ-TL to stream data to the
host.

Parameters are:

st = stream number – always 1 on flightDAQ-TL

pppp = channel bit field – always FFFF (all transducers) on
flightDAQ-TL

trig = trigger type - always 1 (s/w trigger) on flightDAQ-TL

per = data stream interval (in milliseconds) – the following are
valid values for flightDAQ-TL:

0, 4, 5, 10, 20, 30, 40, 50, 100, 200, 1000
(note 0 sends a single packet
f = format field – valid values are:

0 (ASCII), 7 (32bit BE), 8 (32bit LE)

num = number of packets – always 0 (all) on flightDAQ-TL

c

(Note: this command,
sub-command and
parameters are space
separated)

01 st Stream Data – Start Streaming

Starts a pre-configured stream at the rate set in ‘c 00’.

Parameter is:

st = stream number – always 1 on flightDAQ-TL

c

(Note: this command,
sub-command and
parameters are space
separated)

02 st Stream Data – Stop Streaming

Stops a pre-configured stream

Parameter is:

st = stream number – always 1 on flightDAQ-TL

c

(Note: this command,
sub-command and
parameters are space
separated)

05 st bbbb Stream Data – Select Data to be transmitted

Selects whether the stream will include primary EU channel data
or primary & secondary EU channel data.

Parameters are:

st = stream number – always 1 on flightDAQ-TL

bbbb = channel data to stream – valid values are:

0010 (primary) or 0090 (primary & secdonary)

h pppp Calibrate EU offset

Performs a user rezero on the calibrated data.

Page 12

Parameter is:

pppp = channel bit field – always FFFF (all transducers) on
flightDAQ-TL

q 00 None Read Status & Information – Model Number

Returns the instrument model number as a string, e.g. 9016

q 05 None Read Status & Information – Averaging

Returns the current averaging samples setting as a hex string,
e.g. 0010 = 16 samples avergaing

r ppppf Poll Data

Returns a single packet of data for all transducers in the format
specified.

Parameters are:

pppp = channel bit field – always FFFF (all transducers) on
flightDAQ-TL

f = format field – valid values are:

0 (ASCII), 7 (32bit BE), 8 (32bit LE)

u 0aa07 Read Cal Data – Last Calibration Date

Returns the last calibration date in the format ‘yymmdd’.

Parameter is:

aa = 01-10 (hex) for the transducer for which the date is being
requested – Currently the flightDAQ-TL only supports the single
calibration date held for the instrument and hence the tranducer
channel parameter is ignored – any value within the given range
will return the unit last calibration date.

w 10 yy Write Configuration – Averaging

Sets the averaging samples for ADC measurement. Note this
change is volatile and will be returned to EE stored value on a
reset or power cycle.

Parameter is:

yy = number of samples – valid values (in hex) are:

2, 4, 8, 10, 20, 40

w 16 dd Write Configuration – Frame Header

Enables or disables the frame header (aka Message Length field)
that can be placed at the beginning of every response packet.
For flightDAQ-TL is currently recommended that this be disabled.

Parameter is:

dd = enable/disable – valid values are:

00 (disable) or 01 (enable)

Figure 5.1, NetScanner Emulation supported commands

Page 13

5.4. Streamed Data Output format

The format of the received data stream is determined by a number of NetScanner commands – in
particular, the ‘w16’ command which determines whether there is a two byte frame header at the
start, ‘c 05’ which determines whether only the primary channels (1-16) are in the data stream, or
primary & secondary channels are included (1-32) and the ‘c 00’ command which determines the
format of the channel data (ASCII, or 32bit encoded float in big endian & little endian).

With all formats, the channel data is preceeded by a single byte stream number (always 1 for
flightDAQ-TL) and a four byte packet number which is always represented in big endian format
irrespective of the channel data format specified. Also note that the channel data is streamed in
reverse order (16 to 1 or 32 to 1).

ASCII (format ‘0’)
Strm Packet Number Channel ‘N’ Data Channel ‘N-1’ Data …. Channel 1 Data

1 MSB LSB #.###### #.###### #.######

Single byte stream number (always 1), followed by a packet number, followed by all channels
(‘N’ to 1 where ‘N’ = 16 or 32 depending on setting), 6 decimal places, space delimited.

32 Bit, big endian channel data (format ‘7’)

Strm Packet Number Channel ‘N’ Data Channel ‘N-1’ Data …. Channel 1 Data
1 MSB LSB MSB LSB MSB LSB MSB LSB

Single byte stream number (always 1), followed by a packet number, followed by all channels
(‘N’ to 1 where ‘N’ = 16 or 32 depending on setting), MSB first, with no delimiters

32 Bit, little endian channel data (format ‘8’)

Strm Packet Number Channel ‘N’ Data Channel ‘N-1’ Data …. Channel 1 Data
1 MSB LSB LSB MSB LSB MSB LSB MSB

Single byte stream number (always 1), followed by a packet number, followed by all channels
(‘N’ to 1 where ‘N’ = 16 or 32 depending on setting), LSB first, with no delimiters

Figure 5.2, Data Packet Protocol, NetScanner Emulation

5.5. NetScanner Error Codes

The table in Figure 5.3 lists the error responses that may occur as a result of an invalid/incorrectly
received/processed command. The response begins with the letter ‘N’ indicating a Negative
Reponse, followed by a two digit hex code as follows – taken directly from the TE Connectivity
NetScanner Programmers Reference.

Code Description
01 Undefined Command Received
03 Input Buffer Overrun
04 Invalid ASCII Character Received
05 Data Field Error
07 Specific Limits Invalid
08 Invalid Parameter

Figure 5.3, NetScanner Error Codes

